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Abstract

The cross section for the proton weak capture reaction 'H(p,e*v,.)?H is
calculated with wave functions obtained from a number of modern, phase-
equivalent, realistic interactions. To minimize the uncertainty in the axial
two-body current operator, its matrix element has been adjusted to reproduce
the measured Gamow-Teller matrix element of tritium F-decay in model cal-
culations using trinucleon wave functions from these interactions. A thorough
analysis of the ambiguities that this procedure introduces in evaluating the
two-body current contribution to the pp capture is given. Its inherent model-
dependence is in fact found to be very weak. The overlap integral A2(E = 0)
for the pp capture is predicted to be in the range 7.05-7.06, including the
axial two-body current contribution, for all interactions considered.
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I. INTRODUCTION

The proton weak capture on protons is the most fundamental process in stellar nucle-
osynthesis: it is the first reaction in the pp-chain converting hydrogen into helium, and
the principal source for the production of energy and neutrinos in main-sequence stars. The
theoretical description of this hydrogen burning reaction, whose cross section cannot be mea-
sured in terrestrial laboratories, was first given by Bethe and Critchfield {1}, who showed
that the associated rate was large enough to account for the energy released by the Sun.
Since then, a series of calculations have refined their original estimate by either computing
the required wave functions more accurately [2-5] or by using more realistic models for the
nuclear transition operator [6-8). We here contribute to this effort by providing an inte-
grated study of these two aspects with emphasis on a reliable estimate of their associated
theoretical uncertainties.

This paper is divided into seven sections and an appendix. -In Sec. II we set up the
framework for the present study, by providing expressions for the pp fusion cross section
and the required matrix elements and by summarizing the current “best”values for the
various coupling constants, Fermi function, etc. In Secs. III and IV we give a fairly detailed
description of, respectively, the pp and deuteron wave functions, as obtained from modern
(phase-equivalent) interactions. The latter include, along with the short-range nuclear part,
a complete treatment of electromagnetic effects up to order o?, a being the fine-structure
constant, and accurately reproduce the measured low-energy pp scattering parameters and
deuteron properties. Sections V and VI deal with the calculation of the pp cross section in
the approximations, respectively, in which only the one-body or both the one- and two-body
parts of the axial current operator are retained. In Sec. VI we also review the evidence, as
obtained from an analysis of tritium 8-decay, for the axial two-body components (explicit
expressions for them are listed in the appendix). Because of their model dependence, we
adopt the phenomenological approach of adjusting the cutoff masses in the meson-nucleon
vertices and N to A axial coupling constant so as to obtain agreement with the experimental
value for the Gamow-Teller matrix element in tritium g-decay. The question of how this
procedure impacts the pp cross section is also examined. Finally, in Sec. VII we summarize
our conclusions, and provide our “best”value for the pp overlap integral at zero energy.

II. CROSS SECTION

The spin-averaged total cross section for the 'H(p,e*v,)?H reaction can be written in the
form [8]

o(B) = s o () TN MIA 1)

Here Gy is the vector coupling constant for which the value Gy = (1.14939 £ 0.00065) x
107 GeV~?, as obtained from a recent analysis of ft-values for superallowed 0 — 0%
transitions [9], is used; m, is the electron mass and v is the pp relative velocity. The process
is induced by the axial-vector part of the weak interaction Hamiltonian, and consequently
only even parity pp states contribute to the matrix element.



The naive expression for the Fermi function f(F) is given by
1
18 = s / 8(E + Am — E, — E.) p.E. E2dE.dE, ,

(E+Am)/ 2
-/ m'dzszz—l(E+Am—z) , 2.2)

me

where Am = 2m, — mg = 0.93125 MeV (m, and mq are the proton and deuteron masses,
respectively), E = k?/m, is the CM incident energy, and the energy of the recoiling deuteron
is neglected. A more refined treatment of the phase-space factor includes the effect of
Coulomb focusing of the emitted et wave function [3] as well as radiative corrections to the
cross section. The latter have not actually been calculated for the present reaction but have
been estimated to be comparable to those obtained for neutron decay [10]. As a result, the
Fermi function is parametrized as

f(E)=0.144 (1+9.04 E) , (2.3)

with E expressed in MeV. At E = 0 the expression in Eq. (2.2) gives 0.148, which is about
3% larger than the more accurate estimate from Eq. (2.3).
The deuteron and even parity pp wave functions are written as

v = [y + "] ¢ )
W) =4rv2 T ziLY;ML(f«)%xL(r; B %6 (25)
L even My,

where Y{¥ () are the normalized eigenfunctions of the two-nucleon orbital angular momen-
tum L, spin S, and total angular momentum J with projection M; ngls and (r;l’ denote,
respectively, the eigenstates of the spin S and isospin T' with projections Ms and Mr. The
deuteron u(r) and w(r), and pp x1(r; k) radial wave functions are obtained from solutions
of a Schrédinger equation with nuclear and electromagnetic interactions, the latter includ-
ing corrections from vacuum polarization, magnetic moment, two-photon exchange, and
Darwin-Foldy terms. A discussion of the interactions and radial wave functions is given in
Secs. Il and IV below. Here, it suffices to say that x1(r; k) behaves asymptotically as

xu(rik) ~ cos6yFy(kr)+sin 8.GL(kr) , (2.6)

where §;, is the phase shift, and Fy, and G|, are the regular and irregular Coulomb functions.
The nuclear axial current operator consists of one- and two-body components

A, =AP +AD | (2.7)

where a = = is an isospin index, and
A =g, ZU-‘ Tit (28)
Tix = (Tiz :;: itig)/2 . (2.9)
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The ratio of the axial to vector coupling constants, g4 = G4/Gy, is taken to be {10} 1.2654 +
0.0042 by averaging values obtained, respectively, from the beta asymmetry in the decay of
polarized neutrons (1.2626 + 0.0033) [11,12], and ft(n) and ft(0* — 0%), g4 = [2fL(0* —
0+)/ ft(n) — 1}/3 = 1.2681 £ 0.0033 [10]. The form of the axial two-body current operator
depends on the dynamical model used to construct it. However, the need for such a term
is based on an analysis of tritium B-decay. This evidence as well as the impact of the
ambiguities associated with the form of A® on the pp fusion cross section are discussed
below in Sec. VI.

Selection rules for a vector operator restrict the sum over L in the initial capture state,
Eq. (2.5), to the values L = 0 and 2. However, the L=2 contribution is negligible at very
low energies. Indeed, the initial S- and D-wave channel contributions to the matrix element
of the dominant A"} operator are proportional to, respectively,

[ druim xotrib) = [ * dr u(r) Fo(kr) , (2.10)
/owdrw(r) x2(r; k) =~ /owdrw(r) Fy(kr) , (2.11)

where the x(r; k) radial wave functions have been replaced with their asymptotic forms by
setting §; ~ 0, which is appropriate for the energy range under consideration here (a few
keV). It is then easily seen that

Ie* drw(r) Bp(kr) 1 1\ 5° dr/rw(r) I(2,/am,T)
[ dru(r) Follr) = 2 (l * 55) (‘ * W) Ea i e

where 7 = a/vra, I are modified Bessel functions, and the asymptotic expressions, valid in
the regime where 7 >> kr, have been used for the Fy, {13]. The ratio above is found to be
roughly 0.00013 in the limit vq — 0 (corresponding to 7 — 00).

Finally, the dependence of A, upon the momentum transfer ¢ = —p, ~ p,, where p,
and p, are the outgoing lepton momenta, is ignored in Eq. (2.8), because of the very low
energies involved. At E = 0 the kinetic energy available to the final state is only about 420
keV, and the finite momentum transfer correction to the matrix element of A() for S-wave
capture can be estimated to be approximately (grq)? =~ (0.0042)%, where g ~ 420 keV and
rq =~ 2 fm is the root-mean-square radius of the deuteron—a tiny correction, indeed.

(2.12)

III. pp WAVE FUNCTION

The low-energy pp scattering is described by the radial Schrodinger equation

£+k7_L(L:._ll
T

dr? ~myV(r}| xo(r;k) =0, (3.1)

with xp(r;k) the radial wave function, m, the proton mass, and L the orbital angular
momentum. The CM relative momentum k is given by k* = myTian/2, or k = myvra/2. The
boundary conditions for the wave function are

xL(0;k) =0,
x(rik) . Fr(kr)Ci+Gp(kr)Cy , (32)

—00
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with Fi and G|, the standard regular and irregular Coulomb functions [13]. The potential
V(r) can be divided into a long-range electromagnetic part Vgy and a short-range nuclear
part V. The coefficients C; and C, contain all the necessary information about the partial
wave, which is usually expressed in terms of the phase shift §¢:

tan §€ = C,Cy Y. (3.3)

In a practical calculation, the Schrodinger equation (3.1) is integrated out to some r, large
in comparison with the range of the short-range (i.e., nuclear) force. The numerical wave
function is then matched to the asymptotic form of Eq. (3.2), and the corresponding phase
shift is defined to be the phase shift of the nuclear force with respect to Coulomb wave
functions. Following the notation of Ref. [14], we have added the superscript C, for Coulomb.

However, in reality the electromagnetic interaction in pp scattering is much more com-
plicated than just the simple Coulomb interaction. This leads to some practical problems in
applying the scenario of integrating the Schrédinger equation, matching to Coulomb func-
tions, and extracting the phase shift. This will be discussed below.

The full interaction, up to second order in the fine-structure constant o = 1/137, is given
by [14-16]

Veum(pp) = Vor + Vea + Vor + Vum + Vor, (3.4)
where
Vor = 720, (35)
- nEel) | Bl a4 i of [Fe(r)]®
Vez = 2m,, [(A )=+ A (A +HE) | “m | (3.6)
2a o
We =3~ -;_-IVP(T), 3.7
« F, r

Vum = —Z%g#p[ Fs(r)oy-o0 + Rir )Sm] - 2—"13(4;4, 1) ( )L S, (3.8)
Vor = —Zr%;Fa(T)- (3.9)
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Here the Fo(r), Fy(r), Fi(r), and F,(r) are functions representing the finite size of the
nucleon charge distribution. In the limit of point nucleons, Fe(r) = Fi(r) = F,(r) = 1,
whereas Fj(r) = 4w6%(r). Their explicit r dependence is given in Ref. {15]. The various
contributions are described as follows.

The Coulomb interaction Vi contains a well-known [17] energy dependence through o =
2ka/(mpuna,). However, at the extreme low energies of interest to astrophysical calculations
(a few keV), this energy dependence is negligible, and we can set o' = « for all practical
purposes.

The two-photon-exchange interaction Vi, behaves like 1/r2, and so we immediately have
the problem that, in principle, we have to integrate out to infinitely large distances before
we can match to Coulomb functions.

The vacuum polarization potential Vi p describes the augmentation of the photon prop-
agator by an electron-positron pair. In the limit of point protons {Fc(r) = 1), the vacuum
polarization integral is given by [18}

_ 00 om. 1 (1:2 - 1)1/2
IVP(T) = ./; dz e~ 2mers (] -+ F -——zz— s (3.10)
with m, = 0.511 MeV the electron mass. Including the finite-size effect, we get the more
complicated expression as given by Bohannon and Heller {16}, where the exponential is
replaced by

e-2m.r: — D4 (I) e—Zm,r:

- [D‘(z) +1pD*(z) + o+ P)DP(z) + (3o + 30" + ps)D(x)] e?, (3.11)

where p = br, D(z) = [1 — (2m,z/b)?]"", and b = 4.27 fm~!. As a matter of fact, the simple
multiplication of (3.10) with F(r) as an approximation to the inclusion of finite-size effects
(and which was adopted in Ref. [15]), already closely resembles the exact treatment (3.11)
where the finite-size effect is properly folded into the integral.

The magnetic moment interaction Vj s arises as a consequence of the non-vanishing
value of the proton magnetic moment, pu, = 2.79285u0. Also for this potential, the 1/r3
behavior gives rise to practical numerical problems for non-S waves.

Finally, the Darwin-Foldy term Vpp is a short-range potential, describing the finite size
of the proton, where Fj(r) — 4763(r) in the limit of point protons.

Now that we have defined the full long-range electromagnetic interaction, we can return
to the question of how, in practice, to integrate the Schrédinger equation and extract the
phase shift. We will restrict ourselves to S waves, and so the tensor and spin-orbit terms in
the magnetic moment interaction vanish. It is convenient to define a phase shift 8}, which

_ is the phase shift of the solution of the potential W with respect to the solution with the

potential V' as the interaction. The well-known application of this procedure is the situation
where V is the Coulomb potential and W is the Coulomb plus nuclear potential, and the
phase shift 6y = 6§,y is obtained by matching the numerical solution to Coulomb wave
functions as in Eq. (3.2).

If we are to include V¢ in W, we run into the problem that we have to integrate out to
infinitely large distances before we can match to Coulomb functions. However, by including
the point-nucleon limit of Vi, also in V, the asymptotic wave function can be expressed in
terms of non-integer L' Coulomb functions, where L' satisfies

(/'+1)=L(L+1)—-ad . (3.12)
The asymptotic behavior of the wave function is now given by
XL(T) ~ f’,,(kr)Cl + éL(kT)Cz y (313)

with Fy(kr) = Fp(kr) and similarly for Gy(kr). The advantage is clear immediately: we
only have to integrate out to distances large with respect to the nuclear mteractlon which
is only about 20 fm. But we have to bear in mind that now the phase shift is SGHIEE psans
where it should be understood implicitly that the superscript refers to the interactions in
the point-nucleon limit, while the interaction denoted by the subscript includes also the
(short-range) finite-size effects. To make this clear explicitly, we have here separated off the
finite-size effects by writing them symbolically as being due to some short-range potential



Vrs. In this notation, the phase shift with respect to Coulomb functions, as defined in
Eq. (3.3), now reads

c1 _ s01 . £C14C2 c1
0% = 8811 corrsin = 0611 Corrsin + 01402
_ £C14C2
= 8c1icavrs+n T AL (3.14)

where p;, can be easily expressed in terms of the standard Coulomb phase shift o;, as
PL =0’LI—UL—(L’—L)7I'/2 . (315)

The next step is to also include the vacuum polarization. The case where we only have
the Coulomb and vacuum polarization has been discussed in detail by Durand {19] and
Heller [20], who derive expressions for the relevant asymptotic wave functions and vacuum
polarization phase shift 7, = §5},, p. Although the vacuum polarization potential exhibits
an exponential fall-off, the small value of the electron mass means that the Schrodinger
equation has to be integrated out to several hundred Fermi before the potential has dropped
to sufficiently small values, and it is only then that the numerical solution can be properly
matched to the asymptotic solution.

The presence of Vgo considerably worsens the situation. Since the 1/r2 behavior of Vg
is of longer range than the exponential decay of Vi p, the Schrodinger equation has to be
integrated out to distances where Vyp is negligibly small as compared to V. It is only
then that we can match the numerical solution to the proper asymptotic solution and define
the phase shift. Unfortunately, because of the slow fall-off of the vacuum polarization and
the small magnitude of the two-photon-exchange contribution, we now have to integrate out
to much larger distances. Even at a distance of 2000 fm the vacuum polarization has only
dropped to about 1% of the two-photon exchange.

The scenario of getting the pp wave function for a particular nuclear interaction Vy in
the S wave in the presence of the full electromagnetic interaction Vgps is now as follows.
We integrate the Schrédinger equation out to a distance of 3000 fm, where the numerical
solution is matched to the electromagnetic wave functions Fo(kr) and Gg(kr). The latter are
defined to be the solutions of the Schridinger equation in the presence of the point-nucleon
C14+-C2+VP interaction. This procedure, therefore, determines the phase shift 6™ of the
nuclear plus full electromagnetic interaction with respect to the point-nucleon C14+C2+VP
interaction. It should be stressed that this phase shift is not the same as the phase shift of the
nuclear interaction in the presence of only the Coulomb interaction (5Z,y). The relation
between these electromagnetic wave functions and the standard Coulomb wave functions
Fy(kr) and Gy(kr) is given by

Fo\ _ [ cos(po+m) sin(o+m)\ [ Fo (3.16)

Go —sin(po + 79) cos(po + 1) ) \ Go J’ '
with py and 7g the two-photon-exchange and vacuum polarization S-wave phase shifts, re-
spectively. The prime in the vacuum polarization is to indicate that this is the vacuum
polarization phase shift in the presence of Ve2, which is slightly different from what is de-

fined in Refs. {19,20]. Note that the numerical wave function is now properly normalized as
in Eq. (3.2), since 6€ = §BM 4 py + 73,

It should be pointed out that at extreme low energies (a few keV), 6% is almost zero,
po is of the order of a few times 10~* degrees, whereas 7{ rapidly drops from about —10~2
degrees at 10 keV to —10~° degrees at 2 keV, and so §€ exhibits a change of sign and goes
through zero as a function of energy. Hence, it is not recommended to use the normalization
as advocated by Kamionkowski and Bahcall in Ref. [5], i.e.

Xo(r; k) , _ColGo(kr) + cot &y Fa(kr)] (3.17)

with Cj the Gamow penetration factor. In their case [5}, there is no problem (although &€ is
very small and cot §€ becomes very large), because they did not include Vg, Furthermore,
with this normalization (3.17), the overlap integral A, defined below, requires knowledge of
the pp scattering length a,,, where the presence of Vc; and Vip in the full electromagnetic
interaction defines a rather complicated effective-range function [14]. On the other hand, the
normalization (3.2) advocated here allows for an immediate substitution of the numerical
wave function (as obtained from solving the Schrédinger equation) into the expression for A
as defined by Salpeter {2}, without having to worry about a phase shift which goes through

zero at these extreme low energies and without having to define a complicated effective-range
function.

IV. DEUTERON WAVE FUNCTION

The deuteron is the bound state of proton and neutron in the coupled 35,4+2D; two-
nucleon system. For a given local NN potential V (r), the radial wave functions u(r) and w(r)
for the deuteron S- and D-state, respectively, can be obtained from the coupled Schrédinger
equation

(5= 7] ) = mlnute) + Vit
;ﬂ? == ;67] w(r) =7 Vao(r)u(r) + Via(r)u(r)], (CBY

where 71 is twice the reduced mass of proton and neutron, i.e.,

2m,my,

m= .
my+my

(4.2)

All NN potentials applied in this study use consistently the latest, very accurate, values for
nucleon masses {11}; namely,

m, = 938.27231 MeV, (4.3)

m, = 939.56563 MeV, (4.4)
implying

™ = 938.91852 MeV. (4.5)



For the NNV potential acting in particular partial waves, we have introduced the convenient
short-hand notation: Voe(r) = (35|VI’S1), Vie(r) = $Si|VIPDy), etc.; where (£]3S;) =
WM (#) and (#3D1) = VIM(%). The quantity v = ik is discussed below.
The radial wave functions are properly normalized to unity,

/; dr [u’(r) + w’(r)] =1. (4.6)
The asymptotic behavior of the wave functions for large values of r are
u(r) ~ Age™™,

i 3 4 3
w(r) ~ Ape [1+(7r)+(7r)2], (4.7)

where Ag and Ap are known as the asymptotic S- and D-state normalizations, respectively.
In addition, one defines the “D/S-state ratio” n = Ap/As.
Other deuteron parameters of interest are the quadrupole moment

R L
Qi= 20/0 drriw(r) [\/gu(r) - w(r)] , (4.8)
the root-mean-square or matter radius
/2
- { J et [ + w’(r)]} , (49)
and the D-state probability
00
Pp= 2(r). .
D /0 drw*(r) (4.10)

Similar to scattering, the deuteron equation, Eq. (4.1), is solved numerically by inte-
grating out to some large r (25 fm in our case) and matching the numerical waves to their
asymptotic forms, Eq. (4.7), producing As, Ap, and « from which the predicted deuteron
binding energy is extracted.

As mentioned, in the Schrédinger equation, Eq. (4.1), the interaction between the two
nucleons is represented by a local potential, V(r), with r = ry—ry, the relative displacement
between nucleon 1 and 2. However, in general, the NN potential V is nonlocal, i.e., V =
V(r,r') where r is the distance between the two ingoing nucleons and ' the one between
the outgoing nucleons. A local potential can then be written as V(r, ') [ipca = d(r — ')V (r).
For the more general case of a nonlocal potential, the coupled Schrédinger equation reads,

[;;— - 72] u(r) = m/;w dr'rr’ [Voo(r, P u(r') + Via(r, Pw(r)],
[;;5 e ;65] w(r) = ﬁ/;w dr'rr’ [Vao(r, r')u(r') + Vao(r, 7w (). (4.11)

This system of coupled integro-differential equations is then solved by a combination of
finite-difference, integral-discretization and matrix inversion techniques.
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Alternatively, one may consider the two-nucleon system in momentum space, where the
deuteron wave function is given by

vi(a) = [$o()Vi(@) + (@) V3 (@)] & (4.12)

with the normalization
[ dag® [93(0) + vi@)] = 1. (413)

The momentum-space Schridinger equation that corresponds to Eq. (4. ll) consists of
two coupled integral equations,

Yolg) = —% /ow da'a” [Voolg, 4 )%0(d') + Voalg, )¥2(¢)],
Vala) =~ ) 04" Vg, 4Vl + Vanla, ()] (4.14)

Considering a finite set of discrete arguments for the functions on the L.h.s. and using the
same set of momenta to discretize the integrals on the r.h.s. produces a matrix equation
that is solved easily by the matrix-inversion method [21].

The relevant Fourier transforms linking the configuration-space and the momentum-space
approaches are

Vi (g, q) / drr/ dr'r 25 (qr)Vop (r, ™Y (d'r') (4.15)

with Vir (7,7 )icat = 6(r — #')Vp1o(r)/rr’ if the potential is local, and

uLT(T) = \/g /o * dag*ji(a)¥ula) , (4.16)

with ug(r) = u(r), us(r) = w(r), and j, the spherical Bessel functions.

Since high reliability and precision is an important aspect of our present investigation,
we have calculated the deuteron wave functions for some local potentials both ways: first,
by solving Eq. (4.1) directly and, second, by solving Eq. (4.14) by matrix inversion and
then performing the transformation Eq. (4.16) numerically. We find agreement between the
resulting deuteron waves to at least 6 significant digits for any r in the range 0.05 fm to 14
fm. This establishes the reliability of our numerical methods. It also implies that in cases
where we use the momentum-space approach and Eq. (4.16), like for the nonlocal potentials,
our deuteron waves are of the highest numerical precision.

The deuteron is a pole in the S matrix at k = iy. The relativistic relationship between
v and the deuteron binding energy By is given by

V8 =mp+mn — Ba=/ml -7+ /m} - 7% (4.17)

Notice that this equation determines the correct empirical v, since nature is relativistic. We
note that in NN scattering we use the relativistic relationship between k and Ti,p, which
implies that the CM kinetic energy, T, is related to k according to

11



VE=my+my +T = Jmd+ k2 +/md + k2. (4.18)

Thus, consistency with the scattering problem requires the use of Eq. (4.17) to determine
7. The formal solution of Eq. (4.17) is

7= [4m,2,m?l —(s—md— m?,)’] /4s, (4.19)

and, using By = 2.224575 MeV and hc = 197.327053 MeV fm, the accurate numerical value
for v comes out to be

4 = 0.2315380 fm™". (4.20)
To obtain some pedagogical insight into 42, one may set m, &~ my, ~ 1 which yields

1
1

One can now identify the term 7By as the non-relativistic approximation to 4% and ~B3/4
as the relativistic correction. In most calculations of the past, the non-relativistic v was used,
Yar = VB = 0.2316066 fm~'. The difference between v, and the correct v, Eq. (4.20),
leads to a small difference (0.03%) in the overlap integral A? (see below). Although the
difference is rather small, we believe one should use the relativistically correct value (4.20).

Besides the strong interaction, there is also a non-vanishing electromagnetic interaction
between proton and neutron that can be written as [15]

4* =By~ =B} . (4.21)

Vem(np) = Vei(np) + Vuu{np), (4.22)
where
Frp(r
Ver(np) = aﬁ»—i’;(—),
@ 2 Fy(r)
Vum(np) = —m‘up#n [gFa(T)UrO'z + ;3 512]

a  F,(n)
- ——(L- L.-A) . 4.23
2 s 1 A) (129)

Here A = (o) — 02)/2, and Fp(r) is a short-range function representing the finite size of
the neutron charge distribution (for details, see Ref. {15]). Because the S-wave expectation
values for the tensor and spin-orbit operators vanish, the long-range 1/r% parts do not
contribute for L = 0. For L # 0, we make the approximation that gM,y = dy (or
SEM . v ~ Sn in terms of the S matrix). This means that in our calculations the asymptotic
behavior of the deuteron wave functions still satisfy Eqs. (4.7) and (4.14).

The interaction (4.22) is included only in the case of the Argonne AV18 NN potential [15]
where it contributes 18 keV to the deuteron binding energy, mostly from the magnetic
moment part Vysar(np) of the interaction. One would expect that the inner part of the
deuteron wave function is affected by the inclusion or omission of Vga(np) (the outer part is
essentially insensitive since it is ruled by y which is identical for all potentials). Fortunately,
it turns out that the quantitative effect is very small, as will be demonstrated below. Thus,
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also models that do not include the electromagnetic interaction between proton and neutron
can be considered as sufficiently reliable for our study.

Since all NN potentials are fitted to the value of  given in Eq. (4.20), they all accurately
reproduce the empirical deuteron binding energy, By = 2.224575(9) MeV [22]. The other
deuteron parameters, as well as the 35, scattering length ¢, and effective range r{, are listed
in Table 1. Predictions are given for the five high-precision NN potentials that we focus on,
namely, AV18 [15], CD-Bonn (23], Nijm-I [24], Nijm-II {24], and Reid93 [24]. Notice that
not all quantities in Table I are independent. For example, the deuteron effective range,
pa = p(—By, ~By), is related to Ag, 1, and v by

2v
1~ yp4d

For our present investigation, essentially only Ag is of relevance (besides ). However,
As (and pg) cannot be measured directly. The empirical information given in the last
column of Table I on Ag and py are model-dependent extrapolations of low-energy data.
Therefore, to trust the predictions for As by our NN potentials, it is important that these
models reproduce accurately all measured low-energy data, which is confirmed by Table 1.
The only exception is the deuteron quadrupole moment (4, which is underpredicted by all
potential models. There are, however, meson-exchange current contributions and relativistic
corrections for @4 which may make up for the discrepancy. The D-state probability, Pp,
that is listed in the bottom row of Table I, is not an observable. It is, however, an interesting
theoretical quantity in studies of the nuclear force. The lower value for Pp predicted by CD-
Bonn is a reflection of the non-local nature of this potential which is based upon relativistic
meson field theory [23,25]. Meson-exchange Feynman diagrams are, in general, nonlocal
expressions that are represented in momentum-space in analytic form.

Finally in Fig. 1, we display the deuteron wave functions produced by the five NN
potential models. Major differences are, again, related to whether the models are local
or nonlocal. While the central potentials of AV18, Nijm-1I, and Reid93 are stricly local,
the Nijm-I central force includes momentum-dependent terms which give rise to nonlocal
structures in the equivalent configuration-space potential. This affects the deuteron S wave
and is the reason why the u(r) generated by CD-Bonn and Nijm-I are so similar (large solid
and dashed curves in Fig. 1) and differ from the other three potentials. The Nijm-I tensor
potential is strictly local, similar to AV18, Nijm-II, and Reid93, which explains why these
four potentials generate very similar D waves. The CD-Bonn tensor potential is nonlocal.

A1 +n%) = (4.24)

V. AXIAL ONE-BODY CURRENT CONTRIBUTION
Using the wave functions as defined in Eqs. (2.4)-(2.5) and ignoring the D-wave con-

tribution in the initial scattering state, we find that the matrix element of the (dominant)
one-body part of the axial current is given by

eldo roo
(@M | AD | pp) = S/ Tomga "= [ dru(r)xo(ri )

= \/%9,4 CoA(E) , (5.1)
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here “?E}lil,o are the spherical components of AV, A,_, = F(4, + i4,)/v2 and A, =
1, Cp is the Gamow penetration factor, and the overlap integral is conventionally defined

2]

A(E) = ('y:'/2)1/2 g—:;/om dru(r)xe(r; k) . (5.2)

he constant v is defined in Eq. (4.20), and the wave function y, is normalized as in Eq. (2.6).
ecause the solar fusion reaction actually occurs at energies of only a few keV, the phase
iift &y is extremely small, and so the exponential e'® can conveniently be approximated

y unity. Note that when we adopt the normalization as advocated by Kamionkowski and
ahcall [5], Eq. (3.17), we find

AE) = (ayr°/2)" [7 arutrxolrs ) | (53)

here the scattering length a,,, is defined as
1
- a = ll_rg) Cgkcotdy . (5.4)

quation (5.3) coincides with the definition of the overlap integral given by Kamionkowski
nd Bahcall [5]. However, as stated in our discussion on the pp wave function, it is not at all
iivial to calculate the correct scattering length a,, when electromagnetic interactions other
1an the point-particle Coulomb interaction are present.

In the following, we will present our results for the overlap integral using realistic pp and
euteron wave functions. With realistic we mean that these wave functions were obtained
y solving the scattering and bound-state equations using the recent high-precision NN
otential models, the parameters of which were fitted to give an almost optimal description
f the NN scattering data up to lab energies of 350 MeV (i.e., x?/data = 1). The five
/N models we consider consist of the AV18 Argonne model [15], the CD-Bonn model [23],
wo Nijmegen models, Nijm-I and Nijm-II [24], and a regularized update of the Reid soft-
ore potential {24]. The AV18 potential was fitted including all finite-size effects in the
11l electromagnetic potential of Eq.(3.4), whereas the other four potentials used the point-
article approximation, i.e., Fe(r) = F(r) = F,(r) = 1 and Fs(r > 0) = 0. Furthermore,
he AV18 potential is the only model which includes the electromagnetic interaction (4.22)
Iso in the deuteron.

In Table II we show the results for A2(Ei,,) (E = Eja/2) as calculated from Eq. (5.2).
‘he integral was cut off at r = 50 fm, which is valid since beyond this distance the deuteron
rave function has become extremely small, and so the contribution to the overlap integral
recomes negligible. The results are shown for lab kinetic energies of 5, 4, 3, and 2 keV, which
re extrapolated to define the result at zero energy. For each model we use the deuteron and
p scattering wave functions of that particular model. The dependence on the particular
YN model is found to be rather small. Taking the average over all five models we find
12(0) = 6.975 % 0.010. Leaving out the CD-Bonn model, which is quite different from the
ther models in that it is the only model with nonlocal tensor interactions, we find an even
maller model dependence with A%(0) = 6.970 = 0.005.
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We again want to stress that these NN models were fitted including the full electro-
magnetic potential, and so the wave functions have to be calculated in the presence of this
same electromagnetic interaction. Truncating it, for example by only including the stan-
dard Coulomb interaction, will modify the wave function, and hence the overlap integral.
In Table III we show the effect on AZ(E) for different truncations of the electromagnetic
part of the interaction. For the nuclear interaction we take the AV18 potential as an ex-
ample. The other models show a similar trend. We consider four different truncations of
the electromagnetic interaction, all for point-particle protons. The effect of V¢, is seen to
be rather small: neglecting it increases A2(0) by only 0.0035, which is a 0.05% effect. The
proper inclusion of the vacuum polarization is much more important: neglecting it causes
an almost 1% increase.

Finally, for the AV18 potential we can also study the finite-size effects and the effect
of Vem(np) in the deuteron calculation. Neglecting the finite-size effects underestimates
AZ(0) by only 0.08%, as shown in the table. Simply removing Vem(np) changes the binding
energy to Ba(trunc) = —2.242227 MeV, and hence the asymptotic behavior of the deuteron
wave function. The consequence of this is that A2(0) increases by 0.03, almost a 0.5%
effect. However, if we first refit the binding energy (i.e., make a modified AV18 potential
which does not include Vgp(np), but which does have the proper asymptotic deuteron wave
function), then the difference in A2(0) is only 0.001. Hence, the inclusion of Vep(np) under
the restriction that the potential model correctly fits the experimental binding energy, has
only a small effect on the overlap integral, as we alluded to earlier.

VI. BEYOND THE AXIAL ONE-BODY CURRENT CONTRIBUTION

In this section we review the procedure leading to the experimental determination of
the Gamow-Teller (GT) matrix element in tritium S-decay, and demonstrate the inability
of calculations based on axial one-body currents and realistic wave functions from modern
interactions, to correctly predict this value. After a brief discussion of the axial two-body
current operators, we address the issue of their model-dependence by adopting the phe-
nomenological approach of constraining them to reproduce the experimental value of the 3H
GT matrix element. We then calculate these two-body current contributions to the pp weak
capture, examining in particular the question of how their associated uncertainties affect
the pp cross section.

A. Tritium f-decay

Evidence for the presence of axial two-body current contributions to weak transitions
comes from the S-decay of tritium. Its half-life can be expressed as

-____Kiey
Sv(FY + fadi(GT)? °
where §5=1.9% is the so-called outer radiative correction, ¢ is the half-life, and fy and f4

are Fermi functions calculated by Towner, as reported by Simpson [32], to have the values
2.8355 x 10~¢ and 2.8505 x 1078, respectively. The experimental value for the combination

(1+6g)t (6.1)
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K/G% is (6146.6£0.6) s, as obtained by Hardy et al. {9]. This value is actually 0.15% larger
than that used by Simpson [32], (6137.2 + 3.6) s, in his 3H f-decay analysis. Finally, (F)
and (GT) denote the reduced matrix element of the Fermi and GT operators, which in the
one-body limit are given by, respectively

(F) = CHe || X7 11 °H) (6:2)

(GT) = {*He || ZUiTil+ || 3H) . (6.3)

Simpson [32] reports the experimental value (1134.6 £ 3.1) s for the combination
(1 + 8g)tfy. In order to extract a value for the tritium GT matrix element, it is neces-
sary to calculate the Fermi matrix element. If the trinucleons were pure total T = 1/2,
My = £1/2 states, then the Fermi matrix element would just be one. However, charge-
symmetry breaking (CSB) and charge-independence breaking (CIB) and, more importantly,
electromagnetic effects in the nuclear interaction lead to a small correction. In the present
study, such a correction is calculated using *H and 3He wave functions obtained with the
correlated-hyperspherical-harmonic (CHH) method [33] from the AV18 two-nucleon interac-
tion (including electromagnetic terms) and the Urbana UIX three-nucleon interaction [34).
We find, neglecting isospin admixtures T > 3/2 (the probability of T = 3/2 components in
3He has been estimated to be about 0.0016%),

(FY¥2=1-¢=0.9987 . (6.4)

The present value for ¢ is about twice that obtained by Saito et al. [35] in a (converged)
Faddeev calculation based on the older Argonne vy, two-nucleon [36] and Tucson-Melbourne
(TM) three-nucleon [37} interactions and phenomenological CSB and CIB terms constrained
to reproduce the observed mass difference in 3H and 3He. However, the individual binding
energies are underpredicted with this Hamiltonian model by about 3%. In contrast, the
present AV18/UIX CHH wave functions reproduce the experimental binding energies of both
systems within less than 10 keV (incidentally, the variational CHH and “exact” Faddeev [38]
and Green's function Monte Carlo [39] methods produce trinucleon binding energies all
within a few keV of each other). It is unclear at this point whether the difference in e-values
calculated here and in Ref. [35] is to be ascribed to binding energy effects or to differences
in the treatment of the electromagnetic, CSB and CIB interactions (or both). We note that
Simpson uses the value ¢ = 0.0006 in line with the Saito et al. estimate.

Using the measured half-life, and the values K/G% = (6146.6 £ 0.6) s, f4/fv = 1.00529,
(F)2 = 0.9987, and g4 = 1.265430.0042, the “experimental” GT matrix element is obtained

(GT) |exp= V/3(0.957 £ 0.003) , (6.5)

where the /3 is from a Clebsch-Gordan coefficient.

The experimental GT matrix element is compared with predictions from a number of
modern Hamiltonians with various combinations of realistic two- and three-nucleon inter-
actions in Table [V. We also give in Table V the calculated % probabilities of the S-, S'-,
P- and D-wave components in the H wave function [33,38). A few comments are in order.
Firstly, the model Hamiltonians with the TM three-nucleon interaction are all designed to
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reproduce the experimental 3H binding energy in Faddeev calculations by adjusting the cut-
off mass in the TM force [38]. As already pointed out before, the two-nucleon interactions
employed in the present work are phase-equivalent, and produce fits to pp and np scattering
data up to lab energies of 350 MeV with a x? per datum in the range 1.03-1.09.

Secondly, in Table IV we also quote the results obtained using the relation

(GT) ~ V3(Ps + Pp/3 - Pg/3) , (6.6)

where Ps, Pp, and Ps are the probabilities of the S-, D- and S'-wave components in the
3H state. Use of such a relation implicitly assumes isospin symmetry-namely, that 3H and
3He form an isodoublet— and also ignores the contribution of P-wave components. However,
corrections to Eq. (6.6) appear to be very small, a few parts in a thousand.

Thirdly, the results listed in Table IV indicate that modern interactions lead to predic-
tions for the GT matrix element of tritium in the range v/3 x (0.923 — 0.937), and therefore
to an underestimate of the experimental value ranging, in relative terms, from 2.1% for
CD-Bonn/TM to 3.7% for AV18/UIX.

B. The axial two-body current model

For the axial two-body current operator we use a slightly expanded version of the con-
ventional 7- and p-meson exchange model first described by Chemtob and Rho [40). These
are two-body currents associated with excitation of intermediate A resonances by 7- and
p-exchanges, the mp mechanism, and the contact NN and pNN interactions. In the tables,
these operators are denoted, respectively, as Am, Ap, mp, 7S and pS. Explicit expressions
for them are listed in the appendix for completeness. Here we only note that i) the (non-
local) momentum-dependent terms in the -, p- and wp-operators are retained in contrast
to Ref. [35]; ii) monopole form factors are included at the 7NN and pNN vertices with
cutoff masses A, and A,, respectively; iii) there is significant uncertainty in the leading Ar
and Ap contributions, since the N to A transition axial coupling is not known [41]. In the
model adopted here, the latter is related within the quark model to the nucleon g4, namely
gna = (6v2/5)ga.

The present approach consists in using the simplest possible two-body operators that
give an adequate description of the longest-range mechanisms, and in adjusting the cutoff
masses within a given Hamiltonian model so as to reproduce the experimental 3H GT matrix
element. The contributions due to exchanges of heavier mesons, such as the 4, [42,43], or
renormalizations effects, arising from A-isobar admixtures in the nuclear wave functions [41],
are neglected. However, in the next subsection it is argued that these approximations are
not expected to impact in any significant way the theoretical predictions for the pp weak
capture cross section once the two-body current model is constrained to fit the GT matrix
element of tritium.

C. Axial two-body current contributions to the pp capture and 3H GT matrix
element

In Table VI we quote the contributions to the GT matrix element obtained with the CHH
AV18/UIX trinucleon wave functions from the individual components of the axial current
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operators listed in the appendix. The small differences between the present results and those
reported in Ref. [8] are due to the slightly different values used for A, (A, = 4.80 fm™! in
the present work versus A, = 4.65 fm~! in Ref. [8]) and, presumably to a lesser extent,
to the fact the older calculations were based on a different Hamiltonian model, consisting
of the Argonne v;4 two-nucleon and Urbana-VIII three-nucleon interactions, which however
did reproduce the experimental binding energies of the trinucleons in a 34-channel Faddeev
calculation [44]. The cumulative value for the calculated GT matrix element is v/3 x 0.964,
about 0.7% larger than experiment. A slight adjustment in the cutoff masses A, and A, or
NA axial coupling (or both) is thus required to bring theory and experiment into perfect
agreement. We will return to this point later, in Sec. VII.

To test the model dependence, we have calculated the leading Am contribution with
42-channel Faddeev wave functions obtained from the Hamiltonian models discussed ear-
lier, and the results are listed in Table IV. Both the one-body and An contributions show a
strong correlation with the D-state probability in the trinucleon wave functions, which is ob-
viously related to the deuteron D-state probability predicted by the underlying two-nucleon
interaction, as is evident from Tables I and V. This correlation is a direct consequence of
the dominant contributions due to T =11Sp + T = 0 35,-3D; (T = 0 3D,) transitions for
the one-body (An) component. This has been verified explicitly by including only the above
channels in the Faddeev evaluation of the GT matrix element. As a result, the sum of the
one-body and Ar contributions turns out to be essentially model independent, as indicated
in Table IV. Such a conclusion is also expected to hold when the remaining two-body con-
tributions are included. Thus, to reproduce the experimental GT matrix element, a single
adjustment of the cutoff masses A, and A, or gya in the axial two-body current operators
should suffice for all Hamiltonian models considered.

We now turn to the pp capture. We only quote results, presented in Table VII, cor-
responding to the AV18 and CD-Bonn interactions. The values calculated with these two
models, which give the two extremes for the one-body contribution, 6.966 and 6.992 respec-
tively at zero energy, are within less than 0.2% when all two-body current contributions are
included. Thus, the two-body part of the axial current leads to an increase of the AV18 and
CD-Bonn one-body results amounting respectively to 1.6% and 1.1%, consistently with the
findings of the earlier study [8].

Having demonstrated the model independence of theoretical predictions for the GT ma-
trix element and pp weak capture cross section, we now want to address the issue of how
ambiguities in the axial two-body currents might affect this conclusion. To this end, it is
useful to decompose the GT matrix element as

(He | 3 05,4(i5) | *H) = (*He | 3_ 01,4 (i5)P{ (if) | °H)
i<j i<j
+(He | 3 0.+ (i5)P5 (i) | °H) , (6.7)
i<j

where O, is the z-component of any axial two-body current operator, and Py, are projec-
tion operators over 7=0 and 1 two-nucleon states

B +PG) =1, (6.8)
vy S+ Ti T
Pr() = 2100 (6.9)
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In Eq. (6.7) most of the T=0 (T'=1) contribution is coming from conversion of a pn T, S=0,1
(nn T, $=1,0) pair in 3H to a pp T, §=1,0 (pn T, S=0,1) pair in 3He, for example,

(He | 3~ 0,+(i5)P{ (i) | °H) = (*He | 3 F§(i7)0.,+ (i) P{ (i5) | *H) , (6.10)
i<j i<y
since the numbers of T, §=0,0 and T, S=1,1 pairs in the trinucleons are much smaller than
those with T,5=0,1 and T,S=1,0 [45]. It is now easy to see that, if (neglecting isospin-
symmetry breaking corrections) | 3He) = Q | 3H), where Q = 71 ;72,73 is the isospin-flip
operator, then

(He | 3 F{(i)0:,+ (i) P{ (i7) | *H) = (*He | 3_ P (i7)0x+ i) F5 (i) | °H) ,  (6.11)

i<y i<y

since the matrix element is real, Q) commutes with P%, Q? = 1, and ol = Oz. Thus, the
T=0 and T=1 contributions in Eq. (6.7) are expected to be of about the same size. This
can be seen from Table VI, where the sum of the T'=0 and 1 and T'=1 alone contributions
to the GT matrix element from the individual components of the two-body operators are
listed.

It is interesting to define the two-body densities:

po(z; GT) = (*He | 3_ 6(z — 14j)0.4(i5)F5 (i7) | *H) , (6.12)
po(z;pp) = (pp | 3_8(z — 1;)0,,4 (i) | 4,0) , (6-13)
<)
such that
/0 * dz po(z) = O—contribution . (6.14)

These densities are shown in Fig. 2, where the po(z;pp) curves have been rescaled by a
single factor R, obtained by matching the maximum of the GT and pp An densities. As
can be seen from Fig, 2, the GT and pp densities overlap in the region z < 2 fm. Of course,
at larger z-values the po(z; GT) is significantly smaller than the po(z;pp), O = 7S, Ar,7p,
because of the increased binding in the trinucleons. This scaling is to be expected, since it is
a consequence of the “scaling” behavior more generally observed for the calculated T, §=0,1
and T, S=1,0 pair distribution functions in nuclei {45), see Figs. 3 and 4. Finally, we show
in Fig. 5 the par(z) densities obtained with the AV18 and CD-Bonn Hamiltonians for the
GT and pp matrix elements. In this case, both the T=0 and T'=1 contributions are included
in the GT densities-namely, they have been calculated by removing the isospin projector
in Eq. (6.12). Note that the pp densities have been rescaled by a factor R =~ 39.0 obtained
by matching the maximum of the AV18 GT and pp densities. However, this rescaling also
makes the CD-Bonn GT and pp densities very close, see Fig. 5, demonstrating that the R
factor has only a very weak model dependence.

The discussion above shows that two-body contributions to the pp capture are essentially
independent of the specific dynamical model adopted as long as the latter is constrained to
reproduce the experimental value of the GT matrix element.
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VII. CONCLUSIONS

We have calculated the axial matrix element for proton-proton weak capture using five
modern phase-equivalent nucleon-nucleon potentials. All these models give excellent fits
to elastic NN scattering data with a x?/datum near 1 and reproduce measured deuteron
properties very well. We have paid particular attention to details of the electromagnetic
interaction and the proper treatment of the low-energy pp scattering solutions. As noted
before {5] the most important correction to the standard Coulomb interaction between pro-
tons is the vacuum polarization, which reduces the cross section by about 1%. We have
shown that other fine details of the electromagnetic interaction increase the cross section
by about 0.1%. This is in part compensated by the correct relativistic treatment of the
deuteron wave number, v, which gives a net 0.03% reduction in cross section. Including
just the axial one-body operator, the five models differ by only 0.3% in the calculated cross
section.

The biggest remaining uncertainty is in the contribution of axial two-body currents,
which can increase the cross section by about 1-1.5%. Three concerns were expressed at the
recent workshop on solar fusion rates [10] regarding the use of the known tritium f-decay
rate to predict the axial two-body current contribution to the pp fusion reaction. They were:
(1) The model dependence of the one-body contribution to the GT matrix element, and the
resulting uncertainty in the extracted two-body current contribution to that matrix element.
(2) Two-body currents coupling T, T,=1,0 pairs to T, T,=1,1 pairs, which can contribute to
the tritium GT matrix element but not to the pp capture.

(3) Isobar and contact terms could give different contributions to the GT and pp-capture
matrix elements, thus knowledge of their sum in the GT may not be sufficient to predict
their sum in the capture matrix element.

Our detailed calculations show that these concerns do not influence the prediction of the
pp-capture rate. In particular:

(1) The model dependence in the one-body contribution to the GT matrix element comes
mostly from that in the D-state probabilities. Due to the smaller D-state predicted by the
CD-Bonn potential (Table V), the corresponding prediction for this contribution is larger by
about 1% (Table IV). However, the prediction obtained with this potential for the pp-capture
rate via one-body currents is also larger by about 0.3% (Table II) because of the smaller
D-state in the deuteron (Table I). The axial two-body currents are necessarily weaker in
the CD-Bonn model because they strongly couple the S- and D-states. In fact the sum of
one- and two-body current contributions is much less model dependent than either as can
be seen from Tables IV and VII.

(2) The axial two-body currents do not couple the T, T,=1,0 pairs to the T, T,=1,1 pairs in
any significant way, as the discussion in the preceding section makes clear.

(3) The two-body currents are large at small interparticle distances where nuclear forces
dominate over binding energies. In this region the pair wave functions in different nuclei are
similar in shape and differ only by a scale factor. This is the basis of the Bethe-Levinger
conjecture {46), which can be used to relate processes such as pion and photon absorption,
involving nucleon pairs, in different nuclei {45]. Thus the ratios of GT and pp capture matrix
elements of different two-body current terms are nearly the same as can be seen from Fig. 2.
Therefore, knowledge of their sum in the GT matrix element is sufficient to predict their
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sum in the pp capture matrix element.

Finally, as we have already mentioned, the GT matrix element is slightly overpredicted
[v/3 x 0.964 versus the experimental value v/3 x (0.957 + 0.003)]. Reducing the quark-model
prediction for the N to A axial coupling in the Ax and Ap currents by 20% brings theory
and experiment into agreement. The resulting CD-Bonn and AV18 values for the square of
the pp overlap integral at zero energy are then found to be 7.045 and 7.059, respectively.
Predictions for this quantity with other modern interactions are expected to fall in this
range. Thus, the model dependence and theoretical uncertainty appear to be at the level of
a few parts in a thousand, much smaller than the estimate given in Ref. [10].

ACKNOWLEDGMENTS

Several of the authors visited the National Institute for Nuclear Theory (INT) at the
University of Washington in Seattle during the course of this work and benefitted from
discussions with the participants of the workshop on solar fusion rates and the program on
numerical methods for strongly interacting quantum systems. We would like to thank INT
for the kind hospitality.

The work of JC and RS is supported by the U.S. Department of Energy; that of
VGIJS and RBW is supported by the U.S. Department of Energy, Nuclear Physics Divi-
sion, under Contract No. W-31-109-ENG-38; that of WG, HK, and AN is supported by the
Deutsche Forschungsgemeinschaft and the Research Contract No. 41324878 (COSY-044) of
the Forschungszentrum Jiilich; that of RM and VRP is supported by the U.S. National Sci-
ence Foundation via Grant No. PHY96-03097 and Grant No. PHY94-21309, respectively;
finally, the work of AK, SR, and MV is supported by the Italian Istituto Nazionale di Fisica
Nucleare. The calculations were made possible by grants of computer time from the National
Energy Research Supercomputer Center and Hoechstleitungsrechenzentrum Jiilich.

APPENDIX A: THE AXIAL TWO-BODY CURRENT OPERATORS

For completeness, we list here the momentum-space expressions for the axial two-body
currents used in the present work.

(1) Axial m-exchange A-excitation current:

16 f2 o. k;
A@ (g - NN i %5 caqp ks
adi(Q; AT) 55 94 mi(ma —~ m) m2 + k," S (k) {4750 K;
—(Ti X Tj)e0i % k_.,-] +ieg (A1)

(2) Axial p-exchange A-excitation current:

{1+ ) f2(Ks)
A m2(ma —m) m2+ k2

4
A%(q00) = 29 [4 Tia (05 X k;) x k;
—(T')(TJ)AU‘X[(UJXkJ)Xk,]] +11_—‘] (A2)
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') Axial m-exchange (pair) current:

2 ks
A(z).(q;ﬂ's) = ——gA ————f'NN ————0‘1 J _f2 (’C)[ Ti X T') o; x k;
8] 2m m?v m,’,+kf" 2 (' 1/ 7

mirylq + au,-x(pi+p:)1] riej. (A3)

{} Axial p-exchange (pair) current:

g:(l + ’“p)z

2( k.
Af.?j(‘l? pS)= —ga —{& [Tj,a[(o'j x k;) x k;

8m* mi+k?

—iloi x (@5 x ;)] x (pi + P)] + (ri X 7)a [@ & - (05 X Kj)

+i(o; x ky) X (pi + p}) — [o4 % (05 x kj)] x k,-]] +iejg . (A4)
5) Axial mp-current:

2
A® (q: - g F_ Tk e N )
a.u(q! ﬂp) gA m (mg + k‘z)(mz + k?) fP(kl)fi(kJ)(Tl X TJ)B

[(l + K)o x ki —i(pi + P:)] +isj . (A5)

lere q is the total momentum transfer =k; + kj, ky(;) is the momentum transfer to nucleon
(4), pi and p} are the initial and final momenta of nucleon i, and fy(,)(k)=pion (p-meson)-
ucleon monopole vertex form factor. The quark model has been used to relate the 7NA,
‘NA and axial NA couplings to, respectively, the #NN, pNN and g4 couplings. The
xpression for 75 represents the conventional pair current operator given in the literature.
t is obtained with pseudoscalar pion-nucleon coupling. With pseudovector coupling the pion
nomentum k; in the first term in brackets would be replaced by the external momentum
{ and an additional term (p; + p]) would appear with the isospin structure (T; X ;).
lurthermore, the pS operator includes only those terms which are proportional to (1 + x,)2.
“inally, m,, m,, m, and ma are, respectively, the pion, p-meson, nucleon, and A masses.
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TABLES

TABLE 1. Triplet S wave low-energy scattering parameters and deuteron properties.
AV18 CD-Bonn Nijm-I Nijm-II  Reid93 Empirical

az {fm) 5419 5419 5418 5.420 5.422 5.419(7)°

r = p(0,0) (fm) 1753 1752 1.751 1.753 1.755 1.754(8)%

pa=p(—Bag,—Bg) (fm) 1767  1.764 1762 1.764 1.769 1.765(5)

Ag (fm™1/2) 0.8850  0.8845 0.8841 08845  0.8853  0.8845(9)°
n 0.0250  0.0255 00253 00252  0.0251  0.0256(4)°
ra (fm) 1.967  1.966 1.967  1.968 1.969 1.968(6)¢

Qq (fm?) 0270 0270 0272 0271 0.270 0.2859(3)°
Pp (%) 5.76 4.83 5.66 5.64 5.70 —

*Reference [26]
Reference [27,28)
Reference [29]
4Reference [30]
*Reference {31,27]

TABLE II. Square of the overlap integral A(E},p,) at various lab energies for the five NN
potential models. The zero-energy results are obtained by extrapolating the preceding results.

NN model Ref. 5 keV 4 keV 3 keV 2 keV 0 keV
AV18 [15) 7.002 6.995 6.987 6.980 6.965
CD-Bonn [23) 7.022 7.014 7.007 6.999 6.985
Nijm I [24] 7.002 6.994 6.987 6.979 6.965
Nijm II [24] 7.008 7.000 6.993 6.986 6.971
Reid93 {24) 7.011 7.003 6.996 6.989 6.974

TABLE III. Square of the overlap integral A(Ej,;) at various lab energies for four different
truncations of the electromagnetic interaction (all for point-particle protons). The nuclear inter-
action is the AV18 potential [15]. The result for the full interaction with finite-size contributions
i included for comparison.

Ve (pp) 5 keV 4 keV 3 keV 2 keV 0 keV
Ve 7.060 7.051 7.043 7.035 7.019

Ver+ Ve 7.063 7.055 7.047 7.039 7.023
Ver + We 6.993 6.985 6.978 6.971 6.956
Ver+ Ve + Wp 6.996 6.989 6.981 6.974 6.960
full 7.002 6.995 6.987 6.980 6.965
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TABLE IV. One-body and two-body A contributions to the Gamow-Teller matrix element of
tritium S-decay, obtained with various combinations of modern two- and three-nucleon interactions
in CHH and 42-channel Faddeev calculations, the former for the AV18/UIX model only. The
one-body results obtained from Eq. (6.6) are also quoted, while those under the heading “total” give
the sum of the one-body (first column)and An contributions.

Hamiltonian One-Body Eq. (6.6) Ar Total
AV18 0.924 0.925 0.0507 0.975
AV18/TM 0.925 0.925 0.0546 0.980
AV18/UIX 0.922 0.923 0.0560 0.979
CD-Bonn 0.935 0.935 0.0427 0.977
CD-Bonn/TM 0.937 0.937 0.0435 0.980
Nijm I 0.926 0.927 0.0507 0.977
Nijm I/TM 0.928 0.927 0.0534 0.981
Nijm II 0.926 0.927 0.0504 0.976
Nijm II/TM 0.927 0.927 0.0534 0.981
Reid93 0.925 0.926 0.0514 0.977
Reid93/TM 0.926 0.926 0.0549 0.981

TABLE V. The S-, §'-, P-, and D-state % probabilities in H wave functions. The results for
the AV18/UIX model are from Ref. [33).

Hamiltonian S s P D
AV18 90.10 1.33 0.066 8.51
AV18/TM 89.96 1.09 0.155 8.80
AV18/UIX 89.51 1.05 0.130 9.31
CD-Bonn 91.62 1.34 0.046 6.99
CD-Bonn/TM 91.74 1.21 0.102 6.95
Nijm I 90.29 1.27 0.066 8.37
Nijm I/TM 90.25 1.08 0.148 8.53
Nijm II 90.31 1.27 0.065 8.35
Nijm II/TM 90.22 1.07 0.161 8.54
Reid93 90.21 1.28 0.067 8.44
Reid93/TM 90.09 1.07 0.162 8.68
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TABLE VI. Contributions to the Gamow-Teller matrix element of tritium S-decay, obtained
with the CHH AV18/UIX trinucleon wave functions. The cutoff masses Ay = 4.8 fm~! and A, =638
fm~! are used in the axial two-body operators. The cumulative result is 0.9636. The two-body
results obtained by retaining only the contributions of the T = 1 pairs in tritium are also given
(column labelled T'=1).

Total T=1
one-body 0.9218
Ax 0.0560 0.0291
Ap -0.0213 -0.0111
np 0.0070 0.0035
S 0.0044 0.0025
pS ~0.0043 -0.0021

TABLE VII. Square of the overlap integral A(Ei,),) at various lab energies for the AV18 and
CD-Bonn interactions. The zero-energy results are obtained by linear extrapolation of those at
Eip=3 and 5 keV. The cutoff masses A, = 4.8 fm~! and A, = 6.8 fm~! are used in the axial
two-body operators. The two-body contributions are added successively in the given order.

5 keV 4 keV 3 keV 0 keV
AV18 CD-Bonn AV18 CD-Bonn AV18 CD-Bonn AV18 CD-Bonn
one-body  7.002 7.022 6.995 7.014 6.987 7.007 6.965 6.985
+nS 7.015 7.024 7.007 7.016 6.999 7.009 6.977 6.987
+pS 7.005 7.018 6.997 7.010 6.990 7.003 6.967 6.981
+An 7.138 7.126 7.130 7.118 7.122 7.111 7.099 7.089
+4p 7.090 7.092 7.083 7.084 7.075 7.077 7.052 7.055
+np 7.114 7.097 7.107 7.089 7.099 7.082 7.076 7.060
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FIG. 1. Deuteron wave functions; large curves: u(r), small curves: w(r). The solid, dashed,
dash-dot, dotted, and long-dashed curves are generated from the CD-Bonn, Nijm-I, Nijm-II,
Reid93, and AV18 potentials, respectively.
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FIG. 2. Gamow-Teller (solid lines) and pp (dashed lines) two-body densities.

curves have been rescaled by a single factor, as explained in text.
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FIG. 3. The T, S=1,0 pair distribution functions for various nuclei, see Ref. {45]. Note that the
curves have been renormalized to the peak height of the 160 density.
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FIG. 4. The T,S8=0,1 Ms=0,%1 pair distribution functions for given angles & between the
spin-quantization axis and the relative position vector of the two nucleons and for various nuclei,
see Ref. [45]. Note that the curves have been renormalized to the peak height of the deuteron

Mg=x1 0=0 density.
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FIG. 5. Gamow-Teller (solid lines) and pp (dashed lines) A densities obtained with the AV18
and CD-Bonn Hamiltonians. Note that the Gamow-Teller densities include both the T=0 and
T=1 contributions-namely, they have been calculated by removing the isospin projector P (i) in
Eq. (6.12). The pp densities have been rescaled by a single factor R =~ 39.0, obtained by matching
the maximum of the AV18 Gamow-Teller and pp densities.
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